
PC Based COE (DRAFT)

DII COE I&RTS: Rev 2.0 DRAFT October 23, 1995 G-1

Appendix G: PC Based COE (DRAFT)

This appendix describes support for a Windows 95® and a Windows NT® based
COE. (Windows® 3.1 and Windows for Workgroups 3.11 are not supported.)
The COE concept is not specific to Unix, or any other operating system or
windowing environment. However, certain adjustments to COE implementation
details are required to support differences between the PC environment (use of
'\' versus '/' in naming directories, byte swapping, etc.) and Unix, as well as to
take advantage of features offered in the PC environment (e.g., registry).

This appendix should be viewed as an extension of the information contained in
the rest of the document. The compliance requirements, descriptor information,
and tools all apply except as modified and extended by this appendix.

This appendix is in provided in draft form. It describes the present approach as
the COE is extended to include PC platforms for GCCS and GCSS. It is intended
to be used for planning and initial implementation by those developers who will
be building a PC COE-based system. An update to this appendix will be
provided as part of the PC COE release.

Universal Desktop

G-2 October 23, 1995 DII COE I&RTS: Rev 2.0 DRAFT

G.1 Universal Desktop

Many operational sites have a large investment in PCs and PC software, or are
planning significant PC acquistions. Introduction of a Unix-based command and
control system poses challenges for such sites in how to best reuse existing
computing assets to minimize capital, training, maintenance, administration, and
other related costs. The most difficult technical challenge is that some functions
are effectively operating system specific because they may only exist for one
operating system (e.g., access to the JOPES database), because of strong operator
preference (e.g., Microsoft Word® versus Applix®), or because of the availability
of alternatives from the commercial market (e.g., spreadsheets, briefing support).

One approach is to implement a homogeneous network, or to divide work
between operators in such a way that any individual operator deals with only
those functions supported by a single operating system. This approach is not
practical because the "optimum" platform to use is frequently application
specific. Imposing an organization or dictating work responsibilities to
accommodate system limitations is likewise undesirable and impractical.

A second approach is to provide operators with both a Unix platform and a PC
platform. This approach is often neither viable nor desirable due to cost
considerations, or the lack of available desk space for two monitors and
keyboards. Moreover, data sharing between the two systems is difficult or
impossible for even simple operations such as cut and paste.

This problem is not unique to the GCCS and GCSS programs, or the COE
concept. It has been recognized in commercial industry as well where operators
and administrators must manage and use a heterogeneous network. The solution
proposed by commercial industry is the concept of a Universal Desktop. A
Universal Desktop is capable of utilizing resources of the entire network,
regardless of vendor platform, while displaying and accessing the information
from a single computer monitor, keyboard, and mouse. Advances in distributed
client/server technology, and advances in windowing software, provide the
foundation necessary to realize the Universal Desktop concept. The Universal
Desktop concept is maturing, but there are not yet any commercially available
products which have widespread acceptance. There are several distinct
approaches to the Universal Desktop, each with its own set of advantages,
limitations, and advocates.

In the COE context, an operator on a Unix platform needs to have access to
native Unix applications as well as selected PC-based office automation
applications. An operator on a PC platform needs to have access to native
Windows applications, and a selected number of Unix-based applications.

Universal Desktop

DII COE I&RTS: Rev 2.0 DRAFT October 23, 1995 G-3

Universal Desktop approaches applicable to the COE may thus be broadly
grouped into three fundamental categories:

1. Remote execution of client applications on a server, but local display of
results.

2. Local execution of client applications with instruction set emulation as
necessary for selected applications.

3. Native execution of client applications through porting as necessary for
selected applications.

The third approach is the COE method. Limited support is provided for the first
two non-COE approaches, but their wide spread use is not recommended. COTS
software and licenses are the responsibility of the site for any required software,
regardless of the approach selected. Sites which elect to use the first two
approaches will require a combination of the first two if access from both PC and
Unix platforms is required.

Note: It is typically client applications that need to be directly
accessible to an operator, not server applications.

G.1.1 Remote Execution

Remote execution is the ability to run an application on a platform different from
the operator workstation. If the application creates any displayable results, the
results are displayed locally on the operator workstation. If the remote platform
uses the same operating system and windowing software as the local platform,
the issues are relatively straightforward and are not discussed in detail in this
appendix. When the remote platform and the local platform do not use the same
operating system and windowing software, the technical challenges are more
difficult.

Ideally, the results should be displayed using the same "look and feel" as the
native windowing software. That is, if a PC workstation remotely executes a
Unix client application, the results should be displayed in the Microsoft
Windows "look and feel." Unfortunately, this is usually not possible because the
client application is written for a specific windowing environment, while the
APIs and communications protocols are significantly different between
X Windows and Microsoft Windows.

The two subsections which follow address the problem from the perspective of
which platform is the remote platform. In the first, applications are executed
remotely on a Unix platform but displayed locally on a PC running Microsoft

Universal Desktop

G-4 October 23, 1995 DII COE I&RTS: Rev 2.0 DRAFT

Windows. In the second, applications are executed remotely on a PC running
Windows NT while results are displayed locally on a Unix platform running
X Windows. In both cases, applications on the local machine are accessible and
will not be discussed in detail. The approaches outlined are driven by
availability of commercial products and should be viewed as secondary choices
to native execution.

G.1.1.1 Unix Remote Execution

COE-based Unix segments utilize X Windows and Motif for GUI support.
X Windows provides a convenient mechanism that supports remote execution of
Unix applications, but allows displaying results locally on a PC workstation.
Figure G-1 shows the principles involved. The approach requires an X server
resident on the PC (Hummingbird® eXceed®, AGE® Xoftware32®, etc.) which is
launched as a Microsoft Windows application. From within the X server resident
on the PC, a remote login session is established with a client application on the
Unix server. The X Windows DISPLAY environment variable on the Unix server
is set to point to the X server running on the PC. This causes X display requests
from the application to be transparently routed, through the underlying
X Windows protocol, to the X server on the PC.

Unix
Apps

Server

PC
Apps

X
Server

MS Windows

PC
Apps

X
Server

MS Windows

PC
Apps

X
Server

MS Windows

PC
Apps

X
Server

MS Windows

LAN

Figure G-1: Unix Remote Execution

The COE provides an account group, RemoteX, which contains the necessary
files to establish an appropriate runtime environment on the Unix platform. The
DISPLAY environment variable is automatically set and software is in place to
limit the number of users who may access the Unix applications server at one

Universal Desktop

DII COE I&RTS: Rev 2.0 DRAFT October 23, 1995 G-5

time. User profiles and login accounts are administered from the Unix platform.
The Unix desktop software presents the same interface to the PC based user as it
does to the Unix based user, and provides the same level of auditing and
security as for Unix based users.

Modifications to client applications are not normally required for this approach.
However, this approach alone does not provide access to PC applications from a
Unix workstation.

Hardware requirements for this approach are dependent upon which PC X
server software is selected. Refer to specifications provided by the vendor.
Procurement and installation of the appropriate PC X server and associated
network software is the responsibility of the site.

DISA provides support for this approach, but does not recommend it due to:

¥ increased LAN loading,

¥ increased load on the Unix application server,

¥ the requirement for two GUI interfaces (X Windows and Microsoft
Windows) on the PC,

¥ no access being provided to PC applications from the Unix platform, and

¥ limited data sharing between PC Windows and X Windows (e.g., cut and
paste).

G.1.1.2 PC Remote Execution

Figure G-2 represents the approach taken by the commercial product WinDD®.
WinDD is based on Windows NT 3.5 and was developed by a commercial
vendor under a licensing arrangement with Microsoft. WinDD is completely
compatible with NT, but extends NT to support multiple users and display of a
complete Windows NT desktop within an X window.

With this approach, PC applications are loaded on one or more NT-based
application servers, while Unix applications are loaded on one or more Unix
based application servers. Some of the Unix applications may also be distributed
or duplicated on sufficiently powerful Unix workstations. Unix workstations
access Unix applications via X Windows, while PC applications are accessed
through WinDD software. WinDD is loaded on both the NT applications server
and individual workstations. On the workstations, NT applications appear
within an X window controlled by WinDD software. The effect of this approach

Universal Desktop

G-6 October 23, 1995 DII COE I&RTS: Rev 2.0 DRAFT

is the same as the preceding subsection, except that remote execution is on a PC
instead of a Unix platform, and results are displayed locally on an X display
instead of a PC. PC workstations may access PC applications either locally or
from the server, but no access is provided to Unix applications from the PC
workstations.

NT Apps
Server

Unix
Apps

Server

X Windows
Unix
Apps

WinDD
X Windows

Unix
Apps

WinDD
X Windows

WinDD
X Windows

WinDD

LAN

Unix W/S X Display X DisplayUnix W/S

Figure G-2: PC Remote Execution

Sites may purchase WinDD from DISA for Unix platforms. DISA provides
WinDD packaged as a COTS segment for simplified installation, and it is
already configured to properly run on Unix workstations within the COE
environment. The site must purchase and install WinDD for the NT server from
the commercial vendor, and is responsible for WinDD software licenses.
Application software running on the NT server is also the responsibility of the
site.

Hardware requirements for WinDD are summarized below. Refer to vendor
supplied WinDD specifications for a complete set of requirements.

Intel®-based System

(see Microsoft Windows NT Hardware Compatibility List #4094 for minimum
hardware requirements to run NT)

¥ 32MB RAM minimum. Add 4MB for each additional user, or 8MB for
each additional "power user"

Universal Desktop

DII COE I&RTS: Rev 2.0 DRAFT October 23, 1995 G-7

¥ 200MB minimum hard disk storage. Additional space for NT applications
and user data are application dependent.

¥ VGA or SVGA graphics card compatible with Windows NT 3.5

Universal Desktop

G-8 October 23, 1995 DII COE I&RTS: Rev 2.0 DRAFT

WinDD Terminals

¥ 4-bit color only is supported

¥ 2 MB RAM per Windows NT desktop above memory requirements for
other Unix applications

DISA provides support for this approach, but does not recommend it due to:

¥ increased LAN loading and decreased responsiveness, especially when
NT applications are heavily mouse or graphics intensive (screen savers
should be disabled),

¥ the cost of additional hardware requirements for PC systems running
WinDD, and

¥ potential compatibility problems between applications available under
Windows 3.1 and Windows NT.

G.1.2 Emulation

The SunSoft Wabi® product allows Windows 3.1 and Windows for
Workgroups 3.11 applications to be loaded and executed directly on Unix
platforms. The product translates, at runtime, calls to Microsoft Windows APIs
to the equivalent X Windows APIs, and emulates 8x86 instructions. This
approach provides an operator access to Unix and PC applications, but without
the need to have a PC system. However, emulation on a Unix platform is slower
than native execution on the PC, and the approach does not provide access to
Unix applications from a PC.

Wabi does not currently support Windows 95 or Windows NT products. Sites
are further cautioned that not all Windows 3.1/3.11 products are supported
under Wabi. Products which require specialized device drivers (sound cards,
video drivers, etc.) may not operate correctly. Products which require MS-DOS®

either for installation or operation require purchase of a MS-DOS emulator
which is not provided with Wabi.

Refer to vendor product specifications for the most current list of Wabi-
compliant products.

Wabi requires the installation of either Windows 3.1 or Windows for
Workgroups 3.11. Wabi assumes that software will be installed directly from
floppies, but DISA provides a utility which allows software installed from
floppies on one Unix platform to be transferred to another.

Universal Desktop

DII COE I&RTS: Rev 2.0 DRAFT October 23, 1995 G-9

Sites may purchase Wabi and Windows directly from DISA. DISA provides
Wabi and Windows pre-packaged as COTS segments for simplified installation
from tape, and they are already configured to properly run on Unix
workstations within the COE environment. The site is responsible for software
licenses and any additional Windows application software.

Vendor specifications should be consulted for Wabi hardware requirements. The
vendor advertised minimum disk space is on the order of 20-30 MBytes and
20-60 MBytes swap space. Minimum recommended memory is 32 MBytes.

DISA provides support for Wabi, but does not recommend it due to:

¥ a limited number of supported Windows applications,
¥ the sluggish performance of emulation approaches in general,
¥ the requirement to load Windows as well as Wabi,
¥ limited support for device drivers, and
¥ potential security holes in mixing Windows and Unix.

G.1.3 Native Execution

The COE approach to the Universal Desktop is to provide native execution of
applications on each supported platform. Figure G-3 illustrates the approach.
Client applications on the Unix platform use X Windows for GUI support, and
access COE servers through a set of APIs. PC client applications use Microsoft
Windows 95 or Windows NT for GUI support. PC applications access COE
servers through a set of APIs on the PC which route requests across the LAN
through Unix APIs to the appropriate server. Responses are passed back across
the LAN and to the application as a response from the PC based APIs.

There are several advantages to this approach:

¥ Client applications use the same set of APIs whether executing on a Unix
or a PC platform.

¥ Operators have a single desktop using the native GUI support (e.g.,
X Windows for Unix platforms, Windows for PC platforms).

¥ No special programming or site administration techniques are required.

¥ No additional software products must be purchased.

¥ Sites may allocate workstations by balancing availability, cost, preference,
and operator workload as appropriate.

Universal Desktop

G-10 October 23, 1995 DII COE I&RTS: Rev 2.0 DRAFT

The remainder of this appendix describes the PC-based COE from the
perspective of native execution. No specialized hardware or programming
techniques are required. Applications to be accessible from the PCs are loaded
directly on PC workstations. Sites will utilize Unix platforms as appropriate for
database servers and as servers for critical COE components (message handling,
comms, etc.). Sites may provide operators with Unix workstations or PC
workstations as appropriate and as determined by operator work requirements.

LAN

COE APIs

COE
Servers

Unix
Client

Application

X Windows

MS Windows
PC

Client
Application

COE APIs

Unix
Platform

PC
Platform

Figure G-3: Native Execution

Hardware/Software Requirements

DII COE I&RTS: Rev 2.0 DRAFT October 23, 1995 G-11

G.2 Hardware/Software Requirements

The PC based COE requires Windows 95, or Windows NT version 3.51 or
higher. Windows 3.1 and Windows 3.11 are not supported. All software
development shall use Win32 APIs. Win16 APIs are not supported and shall not
be used unless they are part of a COTS product for which there is no 32-bit
alternative. Segments shall not duplicate functionality already provided by
Windows.

All hardware shall be NT-compliant (as defined by the document Microsoft
Windows NT Hardware Compatibility List #4094) whether Windows 95 or
Windows NT is used. Minimum hardware requirements for a PC workstation
are:

¥ 66 MHz 386 (66 MHz 486 recommended for Windows 95, 90 MHz
Pentium recommended for Windows NT)

¥ 8 MBytes RAM for Windows 95 (16 MBytes recommended), 16 MBytes
RAM for Windows NT (32 MBytes recommended)

¥ 200 MBytes disk space required (500 MBytes recommended)

¥ 3.5" floppy diskette drive

¥ LAN Interface card required to access Unix applications

¥ VGA or SVGA graphics card compatible with Windows NT, and capable
of minimum 640x480 graphics in 256 colors

¥ 15" SVGA Monitor (17" recommended)

The following items are optional, but recommended. It is not necessary for every
workstation to contain the additional hardware, but that a sufficient number of
workstations on the LAN contain the additional hardware to meet site specific
operational needs.

¥ 2x speed CD ROM (4x recommended)
¥ 16-bit Soundblaster® compatible card
¥ Tape drive for data archival
¥ HP Laserjet III® compatible laser printer
¥ Color printer for briefing slides

Hardware/Software Requirements

G-12 October 23, 1995 DII COE I&RTS: Rev 2.0 DRAFT

Note: Memory requirements stated here are the minimum for the
kernel COE. 32 MBytes is the minimum for most mission
applications. That is, for most mission applications not provided by
commerical office automation products.

Disk Directory Structure

DII COE I&RTS: Rev 2.0 DRAFT October 23, 1995 G-13

G.3 Disk Directory Structure

The PC-based COE uses the same basic directory structure shown in related
figures from Chapter 5. However, Windows does not support symbolic links,
and Intel-based computers store data bytes in a different order than other
processors. This makes data sharing via disk files more difficult. This section
describes the COE disk directory extensions required to support PCs.

Basic Directory Structure

The structure shown in Figure 5-1 is preserved for PCs. On disk drive C,
subdirectory \h is created at the root level with subdirectories COTS, AcctGrps,
COE, data, etc. The installation software will attempt to put segments on disk
drive C first, but if it can not do so, it will load the segment on the next available
hard disk. The installation software will create the directory \h and other
subdirectories as required on additional hard disk drives.

The environment variable INSTALL_DIR is set to point to where the segment
was loaded at install time, just as for Unix platforms, and includes the disk drive
designation in the pathname. At runtime, the tool COEFindDrive (described
below) can be used to find which disk drive contains the requested segment.

Note: The installation software will not consider network disk
drives in looking for the next available hard disk. Segments can
only be installed on local hard disks, not floppies nor network
drives.

Segment Directory Structure

A Scripts subdirectory is optional for PC segments because environment
extension files are not supported, nor are they needed. Account group segments
that need to establish global environment settings shall do so with a file called
GLOBALENV.BAT contained in a Scripts subdirectory. The GLOBALENV.BAT
file is used for the same purpose as the Unix .cshrc file. PC segments which
need to establish local environment settings may do so through an
LOCALENV.BAT file which shall be located in a Scripts subdirectory.
Segments shall not include a Scripts subdirectory for any other purpose.

PC segments shall place all executables in the bin subdirectory. Segments which
contain dynamic link libraries (DLL files) shall also place them in the bin
subdirectory. With the exception of COTS segments, segments are not allowed to
load DLL files in any other subdirectory.

Disk Directory Structure

G-14 October 23, 1995 DII COE I&RTS: Rev 2.0 DRAFT

PC segments which use private INI files shall store such files in the segment's
data\INI subdirectory.

USERS Directory Structure

The PC COE uses the same operator directory structure as the Unix COE, as
described in Chapter 5. Local operator accounts are specific to a single PC
workstation, while global operator accounts are accessible from any PC on the
network. However, operator accounts may not be mixed between Unix and PC
platforms. Thus, an operator account, whether global or local, is either a PC
operator account or a Unix operator account, but never both.

Global operator account subdirectories (e.g., \h\USERS\global) are physically
located on a PC designated as the server. This directory is made accessible to
other PCs on the network through the share command.

Environment variables USER_HOME, USER_DATA, and USER_PROFILE are used
as described in Chapter 5. They are set by the appropriate account group.

Data Directory Structure

Chapter 5 defines data in terms of data scope. Local data is stored underneath
\h\data\local while global data is stored underneath \h\data\global.
Because data stored by the PC is not directly compatible with Unix platforms, an
additional data subdirectory is created for storing PC only global data. This is the
subdirectory \h\data\PCglobal. Segments shall follow the same rules for this
directory as for the \h\data\global directory, except that only PC segments
can access it. This subdirectory is physically located on a PC designated as the
server and made accessible through the share command.

PCs may also access data stored in the \h\data\global subdirectory.
However, this directory is always physically located on a Unix machine
designated as a server. PC segments shall read and write data in the
\h\data\global directory in network byte order. PC segments shall read and
write data in the \h\data\local and \h\data\PCglobal directories in
native PC byte order.

The installation software attempts to load data segments on the C disk drive. If
there is insufficient room, it will load the data on the next available hard disk
drive. PC segments must use the COEFindData tool, described below, to
determine where data is actually stored.

Disk Directory Structure

DII COE I&RTS: Rev 2.0 DRAFT October 23, 1995 G-15

Miscellaneous

1. Segments shall use file extensions that correspond to conventional
Windows usage. That is, use .EXE for executables, .DLL for dynamic
link libraries, .TXT for ASCII text files, etc.

2. Segments, excepting COTS segments, shall not set the Windows path
environment variable.

3. Segments shall use the directory pointed to by the TEMP environment
variable for temporary disk storage. This corresponds to using /tmp in
Unix, and segments shall delete temporary files when an application
terminates. All files in the TEMP directory are deleted when the
computer is rebooted.

4. Segments shall not add a global "home" environment variable to the
affected account group. Segments shall use COEFindDrive to
determine the location of a segment, but may use a local "home"
environment variable if desired (e.g., an environment variable defined
and visible only within the segment) which is defined by results
returned by COEFindDrive.

5. Environment extension files are not supported, nor required, in the PC-
based COE.

6. app-defaults and fonts subdirectories are not meaningful in the PC
COE. PC segments should not include these subdirectories. If they are
included with a segment, the installation tools will not do any special
processing for these subdirectories as is done for the Unix-based COE.

Account Groups

G-16 October 23, 1995 DII COE I&RTS: Rev 2.0 DRAFT

G.4 Account Groups

Account groups in the PC-based COE correspond to Windows Program Groups.
The present PC COE does not include the CharIF or DBAdm account groups.

When the COE is loaded, the installation tools create program groups called
GCCS (or GCSS for the Global Combat Support System), SecAdm, and SysAdm.
The program items in each program group are determined as segments are
loaded. Some program items, specifically for SecAdm and SysAdm, are provided
by native Windows software and therefore will also be found in other program
groups provided by Windows. This is done by creating duplicate icons which
point to the same executable, not by creating multiple copies of the software.

As with the Unix COE, the specific icons and program groups available to an
operator depend upon the operator profile.

Registry Usage

DII COE I&RTS: Rev 2.0 DRAFT October 23, 1995 G-17

G.5 Registry Usage

Microsoft Windows programs have traditionally created "INI" files to store
configuration information. Windows 95 and Windows NT use a registry instead
to store hardware parameters, configuration data, and Windows-maintained
operator preferences. The registry is structured as a hierarchical database of keys
organized into a tree structure. Each key can contain data items called value
entries and can also contain additional subkeys. Subkeys are created through
Windows APIs, and data values (string, binary, etc.) are associated with subkeys
through APIs. In the registry, keys are analogous to directories while value
entries are analogous to files.

The root level consists of several keys, the most important of which are:

HKEY_LOCAL_MACHINE global settings for the system

HKEY_CURRENT_USER current user's personal preferences

HKEY_CLASSES_ROOT information for data file creation

HKEY_CURRENT_CONFIG current machine configuration

Referencing a registry entry is similar to specifying a file's pathname. For
example, the current version of Windows can be determined by the value of the
registry key at

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion.

Note that keys are case sensitive.

PC segments should use the Windows registry in place of INI files, except for
storing operator preferences information. It is recommended that operator
preferences be stored underneath \h\USERS to minimize porting problems
between Unix and PC applications. Segments may use private INI files but if
they are used, they shall be located in the segment's data\INI subdirectory.

Segments can not create root keys, but may create subkeys underneath the root
keys as desired. In all cases, segments shall create subkeys using the convention
"SegType\SegDirName" where SegType is either COE, DATA, or SEGS
depending upon the segment type. COE is reserved for COE segments, DATA is
reserved for data segments, and SEGS is for use by all other segments.
SegDirName is the segment's directory name. Segments shall use the segment
prefix to name all registry subkey entries.

Registry Usage

G-18 October 23, 1995 DII COE I&RTS: Rev 2.0 DRAFT

For example, assume a software segment whose directory is SegA has a segment
prefix SEGA. Assume the segments needs to store two pieces of information
underneath HKEY_LOCAL_MACHINE\SOFTWARE:

1. the last coordinate system used (UTM, Lat/Lon, etc.) and
2. the last time a certain parameter was computed.

Then the required registry path is

HKEY_LOCAL_MACHINE\SOFTWARE\SEGS\SegA

and two appropriately named subkeys underneath this entry for storing value
entries are SEGA_Last_Coord and SEGA_Last_Time.

Microsoft encourages use of the registry in some ways that are strictly forbidden
in the COE because the COEInstaller tool performs some of these actions
automatically. Refer to the subsection below on segment installation for actions
performed by the installer. Segments, excepting COTS segments, shall not use
the registry to duplicate any actions performed by the COE installation software:

¥ Segments shall not register "uninstall" information in the Uninstall key
beneath CurrentVersion.

¥ Segments shall use the Processes descriptor to specify background
processes. Segments shall not add values to either the Run or RunOnce
keys beneath the CurrentVersion key.

Reserved Prefixes, Symbols, and Files

DII COE I&RTS: Rev 2.0 DRAFT October 23, 1995 G-19

G.6 Reserved Prefixes, Symbols, and Files

The segment prefixes listed as reserved in Chapter 5 are also reserved in the PC-
based COE. In addition, the following segment prefixes are reserved:

NT Windows NT segments
WIN Generic Windows segments
WIN95 Windows 95 segments

The environment variables listed as reserved in Chapter 5 are also reserved in
the PC-based COE. Segments may not create environment variables with the
same name as any reserved environment variable. The following have no
meaning in the PC-based COE, and are not guaranteed to be set:

DISPLAY
LD_LIBRARY_PATH
SHELL
TERM
TZ
XAPPLRESDIR
XENVIRONMENT
XFONTSDIR

All remaining environment variables listed in Chapter 5 are also defined for the
PC-based COE.

The root level AUTOEXEC.BAT and CONFIG.SYS files are reserved files and
shall not be modified by any segment, excepting COTS segments. Moreover, all
windows INI files (specifically, WIN.INI and SYSTEM.INI) are reserved files
and shall not be modified by any segment, excepting COTS segments. Segments
should create and modify their own local INI files.

Programming Standards

G-20 October 23, 1995 DII COE I&RTS: Rev 2.0 DRAFT

G.7 Programming Standards

Programming in the Windows environment is considerably different than the
Unix/X Windows environment. This subsection details programming practices
that are required to minimize problems in mixing the two environments.

G.7.1 File System

Windows NT supports four file systems: FAT, HPFS, NTFS, and CDFS. FAT
(File Allocation Table) is the file system used by MS-MS-DOS, but it is extended
in both Windows 95 and Windows NT (version 3.5 and later) to support long
filenames. HPFS (High Performance File System) originated with OS/2®. NTFS
(NT File System) originated with Windows NT as an improvement over both
HPFS and FAT. CDFS (CD-ROM File System) is specific to CD ROM devices.

NTFS is the COE file system of choice because its security architecture corrects
known problems in FAT. However, Windows 95 does not currently support
NTFS, while the FAT file system is the only available file system for floppy
disks. Therefore, the COE supports both FAT and NTFS. The type of file system
in use should be transparent to most segments, but NTFS shall be used when
there is a choice. Utilities are provided to convert files between FAT and NTFS.

A further complication is that NTFS filenames use the 16-bit Unicode® character
set instead of 8-bit ASCII. Unicode is a technique for representing foreign
alphabets (Japanese kanji, Chinese bopomofo, Greek, etc.). PC segments are not
required to create Unicode strings, but segments must be able to read filenames
which may be Unicode strings. This requirement is necessary because
commercial products may be distributed on media which uses Unicode
filenames, and because Windows NT uses Unicode strings internally.
Windows 95 does not; it uses 8-bit ASCII strings internally.

Pathnames in Windows usually include a disk drive designation (e.g., C:). The
disk drive containing the desired file may be located remotely on another
machine. Windows allows symbolic names, called the Universal Naming
Convention (UNC), to be given to remote paths so that an application need not
know the workstation, disk drive, nor exact path to reach a particular file. UNC
pathnames start with two backslashes (\\) followed by the server name,
followed by the desired pathname and filename. Segments shall support the use
of UNC pathnames.

Programming Standards

DII COE I&RTS: Rev 2.0 DRAFT October 23, 1995 G-21

To summarize,

1. Segments shall support the use of long filenames. Filenames are not
allowed to contain embedded spaces, and should use file extensions as
appropriate to conform to standard Windows usage.

2. Segments shall support use of UNC filenames.

3. Segments shall be Unicode aware, particularly with regards to
filenames.

G.7.2 Dynamic Link Libraries

PC segments shall use dynamic link libraries (DLLs) to the maximum extent
feasible. DLLs are located in the segment's bin subdirectory, except for COE
segments. COE DLLs are located underneath the directory \h\COE\bin for all
COE segments.

Windows originally exported DLL functions by assigning ordinal numbers to
each exported function. Modules linked to DLL functions by ordinal number.
However, later versions allowed linking to be by symbolic name rather than
ordinal numbers. All PC segments shall link by symbolic name, and shall export
DLL functions by symbolic name rather than ordinal numbers. The reason for
this requirement is that ordinal numbers could change over time for exported
functions, whereas the symbolic name will not.

G.7.3 Graphics

PC segments shall support VGA and SVGA resolutions, and shall use the Win32
API Graphics Display Interface (GDI) for creation of 2D graphics. This interface
handles all calls made by applications for graphic operations and thus provides
a standard interface for such calls. As a result, the Win32 GDI allows segments to
be developed which are independent of the type of graphics output device in the
end user's system. That is, segments need only make calls to standard graphic
services provided by the Win32 subsystem regardless of the display, printer, or
multi-media hardware used in the system.

To improve 2D graphics performance, the WinG library may be used. WinG is
an optimized library designed to enable high-performance graphics techniques
under Windows 3.x, Win32s, Windows NT, Windows 95, and future Windows
releases. WinG allows the programmer to create a GDI-compatible HBITMAP
with a Device Independent Bitmap (DIB) as the drawing surface. Programmers
can use GDI or their own code to draw onto this bitmap, then use WinG to
transfer it quickly to the screen. WinG also provides halftoning APIs that use the

Programming Standards

G-22 October 23, 1995 DII COE I&RTS: Rev 2.0 DRAFT

standard Microsoft halftone palette to support simulation of true color on palette
devices. WinG is designed to easily facilitate extracting maximum graphics
performance based on the runtime environment.

Segments shall use OpenGL APIs for 3D graphics. OpenGL is a software
interface that allows the creation of high-quality 3D color images complete with
shading, lighting, and other effects. OpenGL is an open standard designed to
run on a variety of computers and a variety of operating systems. OpenGL
consists of a library of API functions for performing 3D drawing and rendering.
The core library contains low-level functions for graphics primitives, matrix
transformations, lighting, shading, coloring, and texture mapping. A utility
library is also available which supports commonly performed tasks such as
drawing spheres and cylinders, building nonuniform rational B-spline (NURBS)
curves and surfaces, and specifying 3D viewing volumes.

G.7.4 Fonts

Windows supports three different kinds of font technologies to display and print
text: raster, vector, and TrueType®. The differences between these fonts reflect
the way that the glyph for each character or symbol is stored in the respective
font resource file. In raster fonts, a glyph is a bitmap that Windows uses to draw
a single character or symbol in the font. In vector fonts, a glyph is a collection of
line endpoints that define the line segments Windows uses to draw a character
or symbol in the font. In TrueType fonts, a glyph is a collection of line and curve
commands as well as a collection of hints. Windows uses the line and curve
commands to define the outline of the bitmap for a character or symbol in the
TrueType font. Windows uses the hints to adjust the length of the lines and
shapes of the curves used to draw the character or symbol. These hints and the
respective adjustments are based on the amount of scaling used to reduce or
increase the size of the bitmap.

Raster and TrueType fonts are device independent, while vector fonts are not.
TrueType fonts provide both relatively fast drawing speed and true device
independence. By using the hints associated with a glyph, application software
can scale the characters from a TrueType font up or down and still maintain
their original shape. Segments shall use TrueType fonts to take advantage of the
increased performance, flexibility, and WYSIWYG screen to printer
characteristics. Custom application specific fonts shall be avoided in favor of
using industry standard fonts wherever possible.

G.7.5 Printing

PC segments shall use the built in printing facilities provided by Windows. This
includes using the Windows supplied printer common dialog box for

Programming Standards

DII COE I&RTS: Rev 2.0 DRAFT October 23, 1995 G-23

configuring a printer, selecting print quality, selecting the number of copies, etc.
All access to the printer shall be through Windows APIs.

Developers should be aware that some Win32 APIs are available only in
Windows NT. Developers may use these APIs, but must ensure that the segment
still operates correctly in a Windows 95 environment. As appropriate, PC
segments should support drag and drop printing.

G.7.6 Network Considerations

UNC Filenames

PC segments shall support UNC filenames to access network shared drives and
directories. If necessary, a segment can use the WinNet APIs to determine if a
pathname is a network pathname.

The COE contains three pre-defined shared directories: \h\data\PCglobal,
\h\data\global, and \h\USERS\global. The proper UNC filename to use
for these three directories is determined by accessing registry subkeys
underneath HKEY_LOCAL_MACHINE\HARDWARE as follows:

COE\Shared\data_PCglobal \h\data\PCglobal
COE\Shared\data_global \h\data\global
COE\Shared\USERS_global \h\USERS\global

PC segments which create network sharable services or devices shall store UNC
information in the registry. The subkey shall be either COE\Shared or
SEGS\Shared depending upon segment type. The subkey shall be located
underneath HKEY_LOCAL_MACHINE\HARDWARE for hardware devices (e.g., disk
drives) or HKEY_LOCAL_MACHINE\SOFTWARE for software (e.g., servers). The
segment shall document the proper registry information in the API
documentation for the segment.

Network Byte Ordering

Computer architectures sometimes differ in the convention they use for how
bytes are ordered in a word. This is the so-called "big-endian, little-endian"
problem. Computers in which the most significant byte in a word is the leftmost
byte use big-endian byte ordering. Computers in which the least significant byte
in a word is the leftmost byte use little-endian byte ordering. Intel architectures
use little endian byte ordering. When data is sent across the network, it is
important to agree upon the same convention for byte ordering. The big-endian
convention is also known as the network byte order and has been established as
the industry standard.

Programming Standards

G-24 October 23, 1995 DII COE I&RTS: Rev 2.0 DRAFT

The COE standard for byte ordering is network byte order. Segments shall
ensure that all network data is transmitted in network byte order, except for
certain data accessed on a network shared disk drive. Segments shall use APIs in
the WinSock interface to ensure that data sent across the network is in network
byte order. Segments shall store disk data accessible only by PCs in native PC
byte order, but shall store disk data accessible by non-PCs in network byte
order. The shared data directories and byte ordering are as follows:

\h\data\PCglobal PC native byte order. Data here is shared, but
is restricted to only PCs.

\h\data\global Network byte order. Data in this directory
may be accessible from a Unix platform as well
as PCs.

\h\USERS PC Native byte order. Data located here is specific
to operator login accounts. Since a login
account is either for Unix or a PC but never
both, this data is platform specific.

Network Communications

Windows NT supports four transport layer protocols:

NetBEUI provides compatibility with existing LAN
Manager, LAN Server, and MS-Net
installations.

TCP/IP provides compatibility with standard Unix
environments and a routable protocol for wide
area networks.

Data Link Control (DLC) provides an interface for access to mainframes
and printers attached to networks.

AppleTalk® provides interoperability with Macintosh
networks.

TCP/IP is the COE standard network protocol. Segments shall perform network
communications through WinSock APIs. Communications shall be designed to
operate asynchronously to ensure that the server or application does not "hang"
while waiting for a response.

Programming Standards

DII COE I&RTS: Rev 2.0 DRAFT October 23, 1995 G-25

G.7.7 Threads

PC segments should use threads to allow concurrent processing.
Synchronization of threads may be achieved through critical sections,
semaphores, mutexes, or events. Segments shall not use polling as a
synchronization technique. Segment threads shall sleep at a synchronization
point and allow the operating system to "wake up" the thread when the event
requested occurs. This requirement prevents a thread from needlessly wasting
CPU cycles and adversely impacting system performance.

G.7.8 Miscellaneous

The following statements apply to all new segment development. COTS
segments may not meet all mandatory requirements, but shall be documented
where they do not fulfill a mandatory requirement. To the extent possible,
segments should conform to the requirements stipulated by Microsoft for
allowing an application to use the Windows Logo.

Mandatory

1. Segments shall be "close aware." This means that the segment must
enable the Close command and periodically check the close flag through
the Query Close function.

2. Segments shall use common control and common dialog functions
contained in COMCTL32.DLL and COMDLG32.DLL.

3. As appropriate, segments shall support cut and paste operations
through the clipboard.

4. As appropriate, segments shall support drag and drop operations.

5. Segments shall support 16x16, 32x32, and 64x64 icons.

6. Segments shall not use MS-DOS functions.

7. Segments shall operate under both Windows NT and Windows 95. The
segment shall degrade gracefully if it uses APIs found only in
Windows 95 while running in a Windows NT environment, and vice
versa.

8. Segments shall use only Win32 APIs.

9. Segments shall support long filenames and UNC.

Programming Standards

G-26 October 23, 1995 DII COE I&RTS: Rev 2.0 DRAFT

10. Segments shall be Unicode aware.

Optional

1. Segments should run the Windows SDK tool PORTTOOL.EXE to identify
potential problems with how Windows APIs are being used.

2. Segments should define the STRICT constant when compiling Windows
code. This enables strict type checking during compilation.

3. Segments should avoid using environment variables. The registry or
local INI files are preferred alternatives.

4. Developers are encouraged to use message crackers contained in
WINDOWSX.H. Message crackers are a set of macros that makes code
more readable, simplifies porting, and reduces the need to do type
casting.

5. As appropriate, segments should register icons for document types and
provide a viewer to allow the shell to display them. This is done
through the HKEY_CLASSES_ROOT registry. Refer to Microsoft
documentation for the required procedures.

Segment Installation

DII COE I&RTS: Rev 2.0 DRAFT October 23, 1995 G-27

G.8 Segment Installation

Segment installation follows the same sequence as for the Unix environment,
and is defined in Chapter 5. As segments are installed on the PC,
COEInstaller creates registry entries underneath
HKEY_LOCAL_MACHINE\SOFTWARE corresponding to segment type. Assuming
SegDir is the segment's directory name, the following registry keys are created:

COE\SegDir for COE segments
DATA\SegDir for data segments
SEGS\SegDir for all other segments

These registry keys are deleted automatically when the segment is deleted.

COEInstaller sets the environment variables INSTALL_DIR, MACHINE_CPU,
and MACHINE_OS for use in the PreInstall.BAT and PostInstall.BAT
descriptors. The installer also stores the location where the segment was loaded
in the subkey SegDir\SegPath. The value of this subkey includes the disk
drive where the segment was loaded, but it can not be accessed until after
segment loading is completed.

Segments shall not perform any operations (e.g., create registry entries, uninstall
a segment) that are performed by the COE installation software.

PC COE Descriptors

G-28 October 23, 1995 DII COE I&RTS: Rev 2.0 DRAFT

G.9 PC COE Descriptors

The descriptor files defined in Chapter 5 apply to the PC-based COE as well.
This section describes only differences between the Unix and PC environments.

PC segments are required to use SegInfo for descriptors; that is, PC segments
may not use individual descriptor files since these are obsolete. All obsolete
conventions are explicitly invalid for PC segments and are flagged as errors by
VerifySeg.

When a home directory must be given, such as when specifying segment
dependencies, a default disk drive may also be specified. If no default is
specified, disk drive C is assumed. Pathnames must be given using '\' in
conformance to the Windows environment.

When a disk drive designation is given, it and any associated pathname must be
enclosed in double quotes. This is required so that the tools can distinguish
between use of ':' as a field delimiter for descriptor lines, or as a separator
between a disk drive name and a directory pathname.

For example, a Requires descriptor entry for a segment on drive D under the
directory \h\SegA would be described as

segname:prefix:"D:\h\SegA":[version{:patch}]

AcctGroup

PC account groups must omit the shell parameter. It has no meaning in
Windows.

COEServices

The $GROUPS and $PASSWORDS keywords are not supported for PCs.
VerifySeg generates a warning if a segment descriptor contains these
keywords.

DEINSTALL

To conform to Windows file extension conventions, DEINSTALL is renamed
DEINSTALL.BAT for PCs.

FileAttribs

PC COE Descriptors

DII COE I&RTS: Rev 2.0 DRAFT October 23, 1995 G-29

Because file permissions are different between the Unix and PC environments,
FileAttribs is operating system specific. The COE tool MakeAttribs, when
run on a PC, will create a proper FileAttribs file for PC segments. C style
#ifdef preprocessor statements may be used to combine a Unix and PC
FileAttribs descriptor.

Hardware

The diskname field for the $PARTITION keyword must be a disk drive name. For
example, to indicate that a segment requires 20MB on the F disk drive, the
proper $PARTITION statement is

$PARTITION:"F:":20480

Network

The Network descriptor is not supported for PCs. VerifySeg will issue a
warning if a Network descriptor is found for a PC segment.

PostInstall

To conform to Windows file extension conventions, PostInstall is renamed
PostInstall.BAT for PCs.

PreInstall

To conform to Windows file extension conventions, PreInstall is renamed
PreInstall.BAT for PCs.

PreMakeInst

To conform to Windows file extension conventions, PreMakeInst is renamed
PreMakeInst.BAT for PCs.

ReqrdScripts

Environment extension files are not supported for PCs. Therefore, the
ReqrdScripts descriptor is not supported for PCs. VerifySeg will print a
warning if this descriptor is present.

Requires

The pathname given for the $HOME_DIR keyword may include a disk drive
designation. If a disk drive is not specified, the installation tools will load the
segment in the directory indicated, but on the first available disk drive.

Executing Remote versus Local Segments

G-30 October 23, 1995 DII COE I&RTS: Rev 2.0 DRAFT

G.10 Executing Remote versus Local Segments

Remote execution of PC segments is not currently supported.

PC COE Tools

DII COE I&RTS: Rev 2.0 DRAFT October 23, 1995 G-31

G.11 PC COE Tools

The COE Tools defined in Appendix C are also provided in the Windows
environment, and operate in the same manner. This subsection describes
differences in the tools between the Unix and PC environments.

COEFindData

COEFindData is a PC only tool. Its purpose is to determine where a data
segment was loaded in case it could not be loaded on drive C because there was
insufficient room. The syntax is the same as for COEFindSeg.

COEFindDrive

COEFindDrive is a PC only tool. The syntax is the same as for COEFindSeg. It
returns the name of the disk drive, which may be a network drive, that contains
the specified segment.

COEInstaller

The COE installation software is modified to allow segments to be loaded from
floppy diskettes.

COEUpdateHome

Since environment extension files are not required in the PC COE,
COEUpdateHome is not available for PCs.

MakeInstall

MakeInstall is modified to allow segments to be written to a floppy diskette.
Compression/decompression is performed using the Microsoft File
Compression Utility.

SegCatalog

This tool is not currently provided for the PC environment.

PC Segments and CSRS

G-32 October 23, 1995 DII COE I&RTS: Rev 2.0 DRAFT

G.12 PC Segments and CSRS

There are no special requirements for submitting PC segments to CSRS. The tool
mkSubmitTar is available on the PC, and it operates as described in
Appendix C. mkSubmitTar does compression via APIs from the Windows
Lempel-Ziv Expansion functions contained in the LZEXPAND.DLL library.
submit will electronically transmit a packaged segment to CSRS.

PC COE Compliance Checklist

DII COE I&RTS: Rev 2.0 DRAFT October 23, 1995 G-33

G.13 PC COE Compliance Checklist

The items below are in addition to the compliance checklist in Appendix B.

G.13.1 Standards Compliance (Level 1)

Standards Compliance

T F N/A 1. Hardware components are Windows NT compliant.

Operating System

T F N/A 1. The operating system is Windows 95, or
Windows NT version 3.51 or higher.

G.13.2 Network Compliance (Level 2)

Operating System

T F N/A 1. The segment accommodates FAT, CDFS, and NTFS
files.

Network

T F N/A 1. The segments uses native PC byte order for data
internal to the PC, but uses network byte order for
data external to the PC.

T F N/A 2. The segment uses native PC byte order to access
/h/data/local and /h/data/PCglobal.

T F N/A 3. The segment uses network byte order to access
/h/data/global.

G.13.3 Workstation Compliance (Level 3)

Windowing Environment

T F N/A 1. Unless a COTS segment, the segment uses only
Win32 APIs to access Windows routines.

COTS Products

PC COE Compliance Checklist

G-34 October 23, 1995 DII COE I&RTS: Rev 2.0 DRAFT

T F N/A 1. If a 16-bit COTS segment, there is no 32-bit alternative
product.

Runtime Environment

T F N/A 1. The segment executes correctly under Windows 95
and Windows NT.

Miscellaneous

T F N/A 1. The segment supports VGA and SVGA resolutions.

T F N/A 2. The segment supports 16x16, 32x32, and 64x64 icons.

G.13.4 Bootstrap Compliance (Level 4)

Standards Compliance

T F N/A 1. Unless a COTS segment, the segment does not modify
the root level AUTOEXEC.BAT or CONFIG.SYS files.

T F N/A 2. Unless a COTS segment, the segment does not modify
any Windows INI files.

Runtime Environment

T F N/A 1. The segment is able to handle Unicode filenames.

G.13.5 Minimal COE Compliance (Level 5)

Standards Compliance

T F N/A 1. Segment creates all its subkeys underneath
SegType\SegDirName where SegType is either COE,
SEGS, or DATA, and SegDirName is the segment's
directory name.

T F N/A 2. All segment subkeys are named with the segment
prefix.

T F N/A 3. The segment supports UNC filenames.

Segment Descriptors

PC COE Compliance Checklist

DII COE I&RTS: Rev 2.0 DRAFT October 23, 1995 G-35

T F N/A 1. Unless a COTS segment, the segment uses the
Processes descriptor to create boot time processes.
It does not set the Run or RunOnce keys underneath
CurrentVersion.

Process Compliance

T F N/A 1. Unless a COTS segment, the segment does not
register "uninstall" information in the registry (e.g.,
subkey CurrentVersion\Uninstall)

G.13.6 Intermediate COE Compliance (Level 6)

Standards Compliance

T F N/A 1. All INI files used are local to the segment and are
stored in the segment's data/INI subdirectory.

Operating System

T F N/A 1. The segment supports long filenames.

T F N/A 2. The segment uses filename extensions in accordance
with standard Windows usage (TXT for ASCII files,
DLL for dynamic link libraries, etc.).

G.13.7 Interoperable Compliance (Level 7)

Network

T F N/A 1. The segment determines the location for shared data
through the registry.

T F N/A 2. The segment stores information about shared
resources in the location specified in this appendix.

Miscellaneous

T F N/A 1. The segment does not duplicate any Windows
functions.

PC COE Compliance Checklist

G-36 October 23, 1995 DII COE I&RTS: Rev 2.0 DRAFT

G.13.8 Full COE Compliance (Level 8)

Windowing Environment

T F N/A 1. The segment supports cut and paste through the
clipboard.

T F N/A 2. The segment uses common control and dialog
functions from COMCTL32.DLL and COMDLG32.DLL.

T F N/A 3. The segment is close aware.

Runtime Environment

T F N/A 1. Local environmental settings are established through
an LOCALENV.BAT file in the segment's Scripts
subdirectory.

Miscellaneous

T F N/A 1. The segment supports drag and drop.

T F N/A 2. The segment uses the Windows print dialog box for
selecting printer configuration parameters.

G.13.9 Recommended Guidelines

The items listed here are not mandatory, but are strongly recommended to
minimize porting problems and upgrading to subsequent COE releases.

T F N/A 1. The segment links to DLL functions by using
symbolic names, not ordinal numbers.

T F N/A 2. The segment exports DLL functions by symbolic
name, not ordinal numbers.

